skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Minki P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary The accurate estimation of circadian phase in the real‐world has a variety of applications, including chronotherapeutic drug delivery, reduction of fatigue, and optimal jet lag or shift work scheduling. Recent work has developed and adapted algorithms to predict time‐consuming and costly laboratory circadian phase measurements using mathematical models with actigraphy or other wearable data. Here, we validate and extend these results in a home‐based cohort of later‐life adults, ranging in age from 58 to 86 years. Analysis of this population serves as a valuable extension to our understanding of phase prediction, since key features of circadian timekeeping (including circadian amplitude, response to light stimuli, and susceptibility to circadian misalignment) may become altered in older populations and when observed in real‐life settings. We assessed the ability of four models to predict ground truth dim light melatonin onset, and found that all the models could generate predictions with mean absolute errors of approximately 1.4 h or below using actigraph activity data. Simulations of the model with activity performed as well or better than the light‐based modelling predictions, validating previous findings in this novel cohort. Interestingly, the models performed comparably to actigraph‐derived sleep metrics, with the higher‐order and nonphotic activity‐based models in particular demonstrating superior performance. This work provides evidence that circadian rhythms can be reasonably estimated in later‐life adults living in home settings through mathematical modelling of data from wearable devices. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Laboratory studies have made unprecedented progress in understanding circadian physiology. Quantifying circadian rhythms outside of laboratory settings is necessary to translate these findings into real-world clinical practice. Wearables have been considered promising way to measure these rhythms. However, their limited validation remains an open problem. One major barrier to implementing large-scale validation studies is the lack of reliable and efficient methods for circadian assessment from wearable data. Here, we propose an approximation-based least-squares method to extract underlying circadian rhythms from wearable measurements. Its computational cost is ∼ 300-fold lower than that of previous work, enabling its implementation in smartphones with low computing power. We test it on two large-scale real-world wearable datasets: 600 days of body temperature data from cancer patients and ∼ 184 000 days of heart rate and activity data collected from the ‘Social Rhythms’ mobile application. This shows successful extraction of real-world dynamics of circadian rhythms. We also identify a reasonable harmonic model to analyse wearable data. Lastly, we show our method has broad applicability in circadian studies by embedding it into a Kalman filter that infers the state space of the molecular clocks in tissues. Our approach facilitates the translation of scientific advances in circadian fields into actual improvements in health. 
    more » « less